绿色可持续发展战略下的新能源技术研究

  • 投稿
  • 更新时间2018-04-13
  • 阅读量100次
  • 评分0
  • 0
  • 0

  1概述


  自从2008经济危机以来,绿色经济和可持续发展战略得到了空前的关注。绿色经济能够保证自然环境和资源的可持续性,同时保证经济增长和发展。当前流行的凯恩斯主义和相关刺激经济的方案可以实现经济的绿色增长,这些方案依赖于低碳科技的发展。很多国家以此为契机调整国家战略及相关的政策,从而实现向低碳经济的转型,同时以绿色经济为手段来解决环境、经济、社会等各方面的挑战。然而,在技术发展层面之外,政策上的努力和期望依然不清晰。协调绿色经济、能源系统、社会制度依然是当前的主要挑战。如何评价绿色经济的政策效果依然存在争议。


  向绿色能源经济的转型需要更大的动力和对经济结构的彻底转变。尽管在一些领域有了进展,现有的政策和战略仍然不足以解决绿色能源经济面临的世界性问题。这些问题说明人类社会产生了过多无用的绿色能源政策和低碳科技,但同时也加强了我们对绿色能源经济转变相关政策的效果、用途、复杂性的理解。


  总的来说,我们需要更强的领导力、更积极的政治环境、缜密的评估、有效的多层管理、国内国外合作、经济与能源系统整合等来应对向绿色能源经济转型遇到的众多难题。本文研究的目的是总结绿色能源技术的最新进展,为国家绿色能源经济和可持续发展转型提供最新的技术支持。


  2纳米技术在能量储存方面的应用


  能量储存无疑是21世纪最大的挑战之一。为了应对现代社会的需要和日益突出的生态问题,对于新型的、低廉的、环保的能量转换和储存设备需求紧迫,促使了这个领域研究发展迅速。这些设备的性能与其本身使用材料的性质密切相关。而近几年,纳米结构的材料因其非同寻常的机械、电学、光学性质而备受瞩目。认识到纳米材料在能量转换和储存中的优缺点,以及如何控制它们的性质和合成同样至关重要。锂离子电池是当今材料电化学的一大成功。然而,依靠现有的电极和电解质材料,电池的性能已经达到极限。为了突破这个极限,其中一条可行的思路就是运用纳米材料。


  使用纳米级的传统阴极材料有很多缺点,但是阴极依然有进步的空间。一种有关硅纳米柱的方法已经在阴极材料中运用;另一种由五氧化二钒或者LiMn2O4形成的微纤维纳米结构也有上述硅材料的优点:兼顾体积改变并允许高的反应速度。再者,二级纳米阳极材料与二级纳米阴极材料的研究工作也在同时进行。传统观念认为,为了使可充电锂离子电池中可以快速而可逆地充上电,必须在电极上使用嵌入化合物,并且嵌入过程必须是单相的。但是现在出现了很多反例:即使反应中有相转变,锂离子的嵌入反应仍然很快。除此之外,LiFePO4的例子也表明了纳米电极材料的优势。纳米结构扩展了阴极材料的范围。


  锂离子电池的进步也同样依赖于电解质的发展。固体聚合物电解质是目前最有前景的材料,因为它们生产过程简单、形状和大小可控、能量密度高,并且可以实现电池全固态。然而其在室温下很低的离子电导性依然是技术的瓶颈。晶化的聚合物电解质以前被认为是绝缘体,但是最近的研究表明有些复合物有显著增加的导电性。现有材料的电导性还不足以达到实际应用的水平,但是这些材料为进一步的提高开拓了新思路。


  总的来说,把材料从正常大小变为纳米级会显著改变它们的性质,自然也就会改变它们作为能量储存和转换设备材料的性能。有时唯一的影响就是简单改变粒子大小而产生;而对于具有特殊结构的纳米材料,情况可能更为复杂。由粒子更小引起的空间限制和表面积改变会影响材料的很多性质,这使我们更迫切地需要发展新的理论或者改进现有体相材料的理论。这是材料化学和表面科学的交叉学科,这两个学科对于研究纳米材料都很重要。


  3高效太阳能电池的商业化前景


  利用太阳能来生产电能是解决世界能源问题最好的办法之一。然而,为了与传统能源竞争,太阳能电池本身必须足够可靠和价格相对低廉。有几种类型的太阳能电池被广泛研究,包括晶圆、薄膜、有机太阳能电池,并在太阳能电池的可靠性、成本效益方面取得了巨大成功。成本效益可以理解为更少的材料和更高的转化效率。


  图12014年光伏产业各材料占比情况


  在光伏产业中,薄膜电池公司发展迅速;2001~2009年,100家公司进入了此领域,能量产值从14MW上升到2141MW。在长期发展中,如果薄膜光伏技术的效率和可靠性够高,它被预测会超过晶体硅技术。然而与之相对的情况是,投资者担心晶体硅的发展会压制薄膜技术(如图1所示)。薄膜技术在2009年开始衰落,因为它比晶体硅更贵,效率和可靠性更低。在其市场占额减小的情况下,一个不争的事实是:目前薄膜技术没有成功替代晶体硅,但是它在炎热的阳光地带仍然有很大的优势。具有更好温度系数和合适转化效率的薄膜电池在一些极端环境下确实好于晶体硅电池。


  4生物能和废物处理系统


  由于全球性的污染和人为活动,水在某些地区非常稀缺。对清洁水源的需求和人们对环境的重视导致了循环水的使用量增加。因此,混合废水处理系统等先进有效的处理技术在近些年得到了广泛关注。由于对全球的环境和能源问题的持续关注,可持续和环保的新型废水处理技术都得到了发展。因此,很多机构的工作重心都放在了研究高效节能的混合处理系统上。某些先进的混合技术,例如微生物燃料电池,甚至可以从废水中生产能量。


  一个混合能源系统通常有两个或两个以上的能量源一起使用来节省燃料和提高系统效率。而在混合废水处理系统中,大多数可以被概括为两种或两种以上单元的组合:生物处理单元、化学处理单元、物理处理单元。选择何种混合系统取决于废水中的成分。生物处理经常用于清除有机物、氮化物和磷化物;物理处理通常用于除去悬浮物一类的物质;化学处理一般处理金属离子。大多数废水含有多种物质,因此需要用混合系统来彻底的净化。


  (1)物理-生物混合系统可以在含有悬浮物、油污、有机和无机杂质的废水中运用。最常见的例子包括膜生物反应器(MBR):一种结合生物降解法和膜过滤法的反应器。这种反应器可以降低化学需氧量(COD)、生化需氧量(BOD)、氨氮含量(NH3-N)。MBR的優势有:可以处理有机物含量大的废水,提高净水效率,延长固体停留时间使硝化反应更完全。


  (2)物理-化学混合系统用于富含悬浮物、油污、浑浊、有害离子的污水中。常见的物理-化学混合系统包括:


  1)化学凝聚和沉降——用药品来使废水中的微小颗粒凝聚为大颗粒,然后用物理方法除去。


  2)吸附——大比表面积的活性炭可以吸附很多物质。例如,吸附-絮凝-溶气气浮混合法可以除去水中大部分的油污。


  3)臭氧化——种常见的用臭氧来杀菌和氧化有机物的方法。例如,将臭氧化-吸附混合系统加入自养除氮步骤中可以显著提高除氮效率。


  4)混合除盐法——它将可逆电渗析(RED)和可逆渗透法(RO)结合在一起。在除盐过程中,RED利用盐浓度梯度发电,两者的结合可以大大减少能量消耗。


  (3)化学-生物系统通常用于除去氮、磷、难处理的毒性有机物等。带有氧化功能的混合系统可以在短时间内降低废水毒性,并且增加其生物可降解性。而微生物燃料电池可以把有机废物转化为电能,在处理系统中使用它可以增加净水效率并降低处理成本。


  (4)当废水中的污染物种类很多时,就要用到物理-化学-生物混合系统。例如,薄膜-絮凝-吸附-生物反应器(MCABR)可以有效除去有机物。其中有四种机理:膜过滤、微生物降解、聚氯化铝沉降、活性炭吸附。


  5结语


  总的来说,绿色能源技术已经得到长足发展,但仍有很大提高空间。固氧燃料电池是一种较成熟的能源轉换技术,其转换效率比热机高并且污染小。出于对成本和运行环境的考虑,某些情况下的固氧燃料电池需要相对低的运行温度。在不懈的研究工作下,某些电池的运行温度已经可以达到600℃以下,而且通过改进加工工艺和研究新的电解质材料可以进一步降低运行温度,从而达到400℃~500℃的更低温。未来几年内,低温固氧燃料电池及其材料仍会备受瞩目,并且其商业化的趋势会更显著。


  除了能量转换,研究低廉环保的能量储存装置也是绿色能源的一大重点。锂离子电池是一大成功,然而为了突破现有性能的瓶颈,人们开始关注纳米材料。纳米材料具有非同寻常的性质,它在某些情况下被证明可以提高电池性能,而且扩展了可用材料的范围。然而人们对纳米反应动力学机理的了解还是很少,这个领域仍然有很多工作要做。为了实现更大的发展,我们需要发展新的材料和反应理论。


  从长远来看,解决能源危机的最好方案之一是使用太阳能。对于薄膜太阳能电池,其中的CIGS和碲化镉电池都已经达到了很好的转化效率,然而相关元素低产量仍然限制了大规模商业化。有关新型薄膜光伏电池的研究也在进行中。尽管薄膜太阳能电池可能在市场配额上可能无法超过晶体硅电池,但是在特殊环境下薄膜太阳能电池有着无与伦比的优势。


  出于对水资源稀缺的考虑,节能高效的混合污水处理技术近年来得到了广泛关注。由于成本和能源问题,未来的混合系统趋势将是从废水中提取生物能或者通过盐梯发电,因此我们需要在微生物燃料电池与RED研究方面付出更大努力。


  从全球战略角度看,绿色能源经济是一个科学技术和政策层面上的战略,它可以保证环境与资源的可持续性,同时保证经济增长和发展。然而如何制定政策与战略来支持绿色能源经济转型仍然是一个关键问题。尽管现在出现了很多分析绿色能源经济发展的方法,但依然没有一个理论可以全面分析其战略和政策的复杂性和动态过程。我们仍需要多方积极合作,缜密评估,以应对向绿色能源经济转型过程中出现的众多难题。


  李博闻(作者系大连育明高级中学学生)