水稻染色质重塑因子CHR729对激素代谢的影响

  • 投稿mond
  • 更新时间2015-09-22
  • 阅读量883次
  • 评分4
  • 27
  • 0

李健健

(华中农业大学生命科学技术学院,武汉 430070)

摘要:CHR729是水稻(Oryza sativa L.)CHD3类染色质重塑因子,广泛参与水稻生长发育进程,并影响全基因组明显表达和组蛋白修饰,测定了多种植物内源激素在chr729突变体中的含量,探讨了CHR729与激素代谢之间的联系。结果表明,在苗期地上部分和成熟期剑叶中,chr729突变体内源生长素(IAA),脱落酸(ABA),茉莉酸(JA)含量明显降低,生长素合成以及ABA合成基因的表达在chr729突变体中均呈下调表达。树脂切片结果显示,chr729突变体中茎秆成熟组织细胞明显变小,居间分生组织细胞大小无明显变化。苗期检测细胞分裂素氧化酶/脱氢酶(CKX)基因表达发现,chr729突变体中CKX1、CKX2、CKX4基因表达量升高,伴随一些位点组蛋白变体H2A.Z富集程度的上升,表明CHR729可能抑制H2A.Z在基因组上的装载,广泛参与水稻激素代谢调控。

教育期刊网 http://www.jyqkw.com
关键词 :水稻(Oryza sativa L.);染色质重塑因子;激素;干旱

中图分类号:Q756 文献标识码:A 文章编号:0439-8114(2015)02-0468-06

DOI:10.14088/j.cnki.issn0439-8114.2015.02.055

植物激素是植物合成产生的一类小分子化合物。截至目前,多种分子被认定为植物激素,包括生长素或吲哚乙酸(IAA)、细胞分裂素、脱落酸(ABA)、赤霉素、乙烯、油菜素甾醇、茉莉酸、水杨酸等,均对植物生长发育起着重要的调控作用。生长素调控植物向性运动、顶端优势、根的发生等一系列生理过程[1-3]。细胞分裂素参与顶端优势、茎分生组织形成、叶片衰老、营养物质的运输、种子萌发以及植物抗病应答等[4]。脱落酸调控种子休眠,并在植物非生物胁迫响应中发挥重要作用[5]。茉莉酸参与植物抗病,影响植物发育[6]。在不同的环境条件下,植物激素含量是高度动态的。

真核生物的遗传物质存在于染色质中,染色质是经多级组装形成的高度动态的结构。染色质的不同状态,影响转录机器对DNA序列的接近与识别。染色质结构的动态变化主要受到两类复合物调控,一类是组蛋白共价修饰酶类;另一类是ATP依赖的染色质重塑复合物。SWI2/SNF2家族的ATP酶是染色质重塑复合物的核心成员,其通过水解ATP释放能量,驱动染色质构象发生改变,增加或者降低DNA结合蛋白对DNA序列的可接近程度,进而调控基因的表达[7]。拟南芥(Arabidopsis thaliana)中一些SWI2/SNF2家族成员已被鉴定参与调控拟南芥生长发育的多个进程。CHD3类染色质重塑因子PICKLE(PKL)参与拟南芥种子萌发,主根和侧根的发育,根分生组织活性以及心皮的分化[8-15];另一个染色质重塑因子BRAHMA(BRM)调控拟南芥茎和叶片的发育以及开花等过程[16-19]。此外,PKL和BRM也与多种激素调控相关,如生长素、细胞分裂素、脱落酸等[12,20-23]。

水稻(Oryza sativa)的染色质重塑因子CHR729也已被鉴定出来,CHR729功能缺失造成水稻多种生长缺陷,例如植株矮小、近轴面叶片白化、开花期推迟等[5,24]。CHR729基因缺失影响全基因组水平大量基因的表达和组蛋白修饰[24]。然而,CHR729是否影响激素代谢仍不清楚,本研究通过测定多种内源植物激素的含量,发现IAA、ABA、JA含量在chr729突变体中显著降低,激素代谢相关基因的表达也受到CHR729功能突变的影响,CHR729影响水稻多种激素代谢。

1 材料与方法

1.1 材料

本试验使用的亚洲栽培稻粳稻品种分别为中花11(Oryza sativa L. subsp. japonica cv. Zhonghua 11),HY(Oryza sativa L. subsp. japonica cv. Hwayoung)和SSBM(Oryza sativa L. subsp. japonica cv. Ishikari-shiroge)。CHR729基因的两个等位突变体分别为T-DNA插入突变体chr729,背景为HY,EMS诱变突变体oschr4,背景为SSBM。

1.2 幼苗处理

1)CHR729表达模式验证时,正常成长的野生型中花11在不同生长时期进行取样并诱导愈伤取样,取样部位包括愈伤、幼苗、叶片、剑叶、茎和穗子。

2)聚乙二醇和脱落酸处理试验时,将在生根培养基上无菌状态下发芽13 d的幼苗移出无菌环境炼苗1 d后,分别用20% PEG 6000和2 μmol/L ABA浸泡幼苗并在不同的时间点取样。

1.3 基因表达检测

野生型HY和chr729突变体水稻种子去壳并经过表面消毒后,接种至生根培养基上,正常光照条件下生长11 d后取地上部分,按照TRIzol试剂(Invitrogen公司)说明书提取水稻RNA。取4 μg总RNA,用1 μL DNase I (invitrogen) 37 ℃ 消化15 min去除 DNA污染,加1 μL 25 mmol/L EDTA后,冰上放置5 min,65 ℃灭活10 min;在冰上冷却2 min后,加1 μL Oligo dT15(100 ng)和1 μL 10 mmol/L dNTPs 65 ℃静置5 min;冰上放置2 min,加入4 μL 5×Buffer、1 μL M-MLV、1 μL HPRI(RNA 酶抑制剂)、2 μL 0.1 mol/L DTT,37 ℃反转录1.5 h;100 ℃灭活10 min,加入140 μL ddH2O。Real-time PCR使用ABI SYBR green试剂盒,仪器为ABI 7500 Real time PCR system。每个样品以肌动蛋白(actin)为内参,重复3次。

1.4 组蛋白突变体H2A.Z在基因位点的富集检测

染色质免疫沉淀(ChIP)操作方法参照文献[25]。取正常条件下生根培养11 d的水稻幼苗约2 g置于1%甲醛中真空下交联后液氮中研磨,染色质被超声波打成200~750 bp的片段,以H2A.Z抗体进行免疫沉淀。抗体沉淀前后的DNA以基因特异性引物进行荧光定量PCR检测,分析H2A.Z在基因位点的富集情况。

1.5 激素测定

植物内源激素IAA、ABA和JA的含量测定参照文献[26]进行。取正常条件下生根培养11 d的水稻幼苗地上部分约0.1 g,液氮研磨后加入到750 μL预冷的提取缓冲液中(甲醇∶水∶醋酸=80∶19∶1),缓冲液中加入内标(10 ng 2H6 ABA,10 ng DHJA, 5 ng D2-IAA,3 μg NAA),4 ℃摇床300 r/min避光提取16 h以上。4 ℃,13 000 r/min离心15 min后转移上清液,沉淀继续以400 μL缓冲液重悬,摇床提取4 h以上。离心后合并上清液,用1 mL注射器吸取合并的上清并过0.22 μm滤膜(津腾公司,尼龙66)至另一离心管中,在通风橱中用氮气吹干,加200 μL甲醇颠倒几次后4 ℃溶解3~6 h。4℃、13 000 r/min离心15 min,轻轻吸取上清液150~180 μL至内插管中,放置于质谱专用上样瓶中用于质谱分析。

2 结果与分析

2.1 聚乙二醇和脱落酸对CHR729基因表达的影响

为了解CHR729基因的功能,对水稻多个组织或器官中CHR729基因表达进行了分析。定量PCR结果表明,CHR729基因广泛表达于多个组织或器官,包括愈伤、幼苗、叶片、剑叶、茎和穗子等(图1A)。其中,在叶片和愈伤中,CHR729基因的表达量相对较高,表明CHR729在叶片和愈伤中可能发挥重要功能,并且chr729突变体叶片近轴面白化、叶片变窄,愈伤褐化(图1B、图1C)也验证了这一点。CHR729基因突变导致多种生长缺陷,为了说明CHR729是否在增强水稻对环境的适应性方面发挥功能,分别检测了幼苗经聚乙二醇(PEG)处理或者脱落酸(ABA)处理后CHR729基因的表达情况。结果(图1D、图1E)表明,CHR729基因的表达受到PEG和ABA的诱导。

2.2 CHR729基因突变对植物激素的影响

植物激素在植株正常生长发育中发挥重要作用,为了说明chr729突变体产生的多种表型是否与激素水平有关,分别对苗期地上部分和成熟期剑叶中IAA、ABA和JA的含量进行了分析。由图2可以看出,CHR729基因突变后,IAA、ABA和JA的含量均明显下降。为了说明CHR729是否影响激素合成,在幼苗期地上部分对生长素合成基因表达进行检测,发现生长素合成相关的大部分YUCCA类基因的表达量在突变体中均下降。此外,对苗期ABA合成相关基因的表达也发现,OsZEP、OsLCY、OsZDS、OsPDS的表达在CHR729基因的两个等位突变体(chr729和oschr4)中表达量均下降,说明CHR729基因影响了ABA合成。

2.3 干旱对chr729突变体的影响

CHR729基因的表达受到PEG和ABA的诱导,且chr729突变体中内源ABA含量降低,推测CHR729可能参与抗旱应答。通过测定野生型与chr729突变体离体叶片失水速率,发现chr729突变体中失水速率比野生型快。进一步对野生型和chr729突变体植株进行干旱处理,发现chr729突变体在干旱条件下叶片更容易表现出卷曲的表型,而正常浇水条件下,叶片均表现为自然伸展,说明CHR729基因突变后,植株对干旱敏感性增强(图3)。

2.4 CHR729对细胞分裂和伸长的影响

chr729突变体表现出株高变矮的表型,为了说明株高变矮与细胞分裂和细胞伸长的关系,对成熟茎秆进行了纵向树脂切片,并对居间分生组织和成熟组织细胞大小进行了统计。结果表明,chr729突变体成熟组织中细胞大小比野生型细胞明显变小,而居间分生组织突变体与野生型的细胞大小无明显差异,说明chr729突变体株高变矮与成熟组织细胞伸长减弱有关。此外,通过细胞分裂素氧化酶/脱氢酶(CKX)的表达可以反映细胞分裂的快慢。对CKX基因的表达模式进行了分析,发现CKX1、CKX2、CKX4、CKX5、CKX8、CKX11在苗期地上部分有表达。进一步Real-time PCR验证发现在chr729突变体幼苗地上部分CKX1、CKX2、CKX4基因的表达明显上升,同时染色质免疫沉淀(ChIP)发现突变体中H2A.Z在CKX2、CKX4、CKX8、CKX11的基因位点富集程度明显高于野生型,说明CHR729可能通过抑制H2A.Z在基因组一些位点的装载进而抑制基因的表达(图4)。

3 小结与讨论

3.1 CHR729在水稻激素代谢中的作用

植物激素在植物的正常生长过程中有着非常重要的作用。在拟南芥中,PKL和BRM与多种激素应答有关[12,20-23],水稻chr729突变后会出现多种表型[5,24]。本研究分析结果也表明,CHR729突变会导致多种激素水平的下降,包括IAA、ABA和JA,并且伴随着IAA和ABA合成相关基因表达量的下降以及细胞分裂素分解代谢相关基因表达量的上升。进一步推测CHR729可以通过调整体内不同激素水平或者调控激素应答以调控水稻的正常生长。

3.2 CHR729在H2A.Z装载过程中的抑制作用

组蛋白突变体H2A.Z通常会被SWR1类的ATP酶装载到基因5’末端,从而促进相应基因的转录[27-29],并被INO80类的ATP酶清除以抑制基因的表达[30]。拟南芥中与SWR1复合物组分的同源蛋白被报道参与了叶片发育、开花、DNA修复、体细胞重组、减数分裂以及系统获得性抗性应答等过程[31-34],拟南芥INO80蛋白则参与控制同源重组过程[35],CHD蛋白家族也被报道参与组蛋白H3突变体的装载过程[36-39],但它与H2A.Z突变体之间的联系还不是很清楚。本研究发现CHR729能够抑制H2A.Z在一些基因位点的富集,进而调控基因的表达。

3.3 CHR729影响ABA的应答

多数植物染色质重塑因子重塑机制并不清楚,但是也有报道相继阐述了其在逆境应答中的功能。在拟南芥中,染色质重塑因子PKL和BRM并不受外源ABA诱导,在没有受到非生物逆境时,它们通过组蛋白修饰H3K9me2和H3K27me2以及高密度的核小体抑制ABI3和ABI5的表达,从而降低了非逆境条件下ABA的应答[22,40]。与之相反,拟南芥SWI3同源蛋白AtSWI3B,属于SNF2染色质重塑复合物成员,却可以通过维持ABA应答基因RAB18和RD29B的表达促进对ABA的响应[41]。这些结果说明染色质重塑因子对ABA的调控是双向的,既可以促进,也可以抑制其作用。本研究发现染色质重塑因子基因CHR729受到PEG和ABA诱导,并且chr729突变体对干旱处理高度敏感,这些结果表明CHR729在水稻抗旱中发挥作用,但是具体的机制仍需进一步研究。

教育期刊网 http://www.jyqkw.com
参考文献

[1] WOODWARD A W,BARTEL B. Auxin: Regulation, action, and interaction[J]. Ann Bot, 2005, 95(5):707-735.

[2] CHAPMAN E J,ESTELLE M. Mechanism of auxin-regulated gene expression in plants[J]. Annu Rev Genet, 2009,43:265-285.

[3] TEALE W D, PAPONOV I A,PALME K. Auxin in action: Signalling, transport and the control of plant growth and development[J]. Nat Rev Mol Cell Biol, 2006, 7(11):847-859.

[4] WERNER T, MOTYKA V, LAUCOU V, et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J]. Plant Cell, 2003, 15(11):2532-2550.

[5] ZHAO C, XU J, CHEN Y, et al. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll[J]. Planta, 2012, 236(4):1165-1176.

[6] LYONS R, MANNERS J M,KAZAN K. Jasmonate biosynthesis and signaling in monocots: A comparative overview[J]. Plant Cell Rep, 2013, 32(6):815-827.

[7] CLAPIER C R,CAIRNS B R. The biology of chromatin remodeling complexes[J]. Annu Rev Biochem, 2009, 78:273-304.

[8] AICHINGER E, VILLAR C B, DI MAMBRO R, et al. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root[J]. Plant Cell, 2011, 23(3):1047-1060.

[9] AICHINGER E, VILLAR C B, FARRONA S, et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis[J]. PLoS Genet,2009,5(8):e1000605.

[10] OGAS J, CHENG J C, SUNG Z R, et al. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant[J]. Science, 1997, 277:91-94.

[11] OGAS J, KAUFMANN S, HENDERSON J, et al. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis[J]. Proc Natl Acad Sci USA, 1999, 96(24):13839-13844.

[12] FUKAKI H, TANIGUCHI N,TASAKA M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation[J]. Plant J, 2006, 48(3):380-389.

[13] ESHED Y, BAUM S F,BOWMAN J L. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis[J]. Cell, 1999, 99(2):199-209.

[14] DEAN R S, HENDERSON J T, JEROME R E, et al. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis[J]. Plant J, 2003, 35(1):33-43.

[15] LI H C, CHUANG K, HENDERSON J T, et al. PICKLE acts during germination to repress expression of embryonic traits[J]. Plant J, 2005, 44(6):1010-1022.

[16] FARRONA S, HURTADO L, BOWMAN J L, et al. The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering[J]. Development, 2004, 131(20):4965-4975.

[17] HURTADO L, FARRONA S,REYES J C. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana[J]. Plant Mol Biol, 2006, 62(1-2):291-304.

[18] FARRONA S, HURTADO L, MARCH-DIAZ R, et al. Brahma is required for proper expression of the floral repressor FLC in Arabidopsis[J]. PLoS One, 2011, 6(3):e17997.

[19] TANG X, HOU A, BABU M, et al. The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves[J]. Plant Physiol, 2008, 147(3):1143-1157.

[20] HENDERSON J T, LI H C, RIDER S D, et al. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses[J]. Plant Physiol, 2004, 134(3):995-1005.

[21] FURUTA K, KUBO M, SANO K, et al. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli[J]. Plant Cell Physiol, 2011, 52(4):618-628.

[22] HAN S K, SANG Y, RODRIGUES A, et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis[J]. Plant Cell, 2012, 24(12):4892-4906.

[23] ARCHACKI R, BUSZEWICZ D, SARNOWSKI T J, et al. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in Arabidopsis[J]. PLoS One, 2013, 8(3):e58588.

[24] HU Y, LIU D, ZHONG X, et al. CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome[J]. Proc Natl Acad Sci U S A, 2012, 109(15):5773-5778.

[25] LI T, CHEN X, ZHONG X, et al. Jumonji C domain protein JMJ705-Mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice[J]. Plant Cell, 2013, 25(11):4725-4736.

[26] LIU H, LI X, XIAO J, et al. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: Application in study of rice-bacterium interaction[J]. Plant Methods, 2012, 8(1):2.

[27] ZILBERMAN D, COLEMAN-DERR D, BALLINGER T, et al. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks[J]. Nature, 2008, 456:125-129.

[28] MIZUGUCHI G, SHEN X, LANDRY J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex[J]. Science,2004,303:343-348.

[29] ZHANG H, ROBERTS D N,CAIRNS B R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss[J]. Cell, 2005, 123(2):219-231.

[30] PAPAMICHOS-CHRONAKIS M, WATANABE S, RANDO O J, et al. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity[J]. Cell, 2011, 144(2):200-213.

[31] CHOI K, PARK C, LEE J, et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development[J]. Development,2007,134(10):1931-1941.

[32] LAZARO A, GOMEZ-ZAMBRANO A, LOPEZ-GONZALEZ L, et al. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development[J]. J Exp Bot, 2008, 59(3):653-666.

[33] MARCH-DIAZ R, GARCIA-DOMINGUEZ M, LOZANO-JUSTE J, et al. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis[J]. Plant J, 2008, 53(3):475-487.

[34] ROSA M, VON HARDER M, CIGLIANO R A, et al. The Arabidopsis SWR1 chromatin-remodeling complex is important for DNA repair, somatic recombination, and meiosis[J]. Plant Cell, 2013, 25(6):1990-2001.

[35] FRITSCH O, BENVENUTO G, BOWLER C, et al. The INO80 protein controls homologous recombination in Arabidopsis thaliana[J]. Mol Cell, 2004, 16(3):479-485.

[36] WALFRIDSSON J, BJERLING P, THALEN M, et al. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres[J]. Nucleic Acids Res, 2005, 33(9):2868-2879.

[37] HARADA A, OKADA S, KONNO D, et al. Chd2 interacts with H3.3 to determine myogenic cell fate[J]. EMBO J, 2012, 31(13):2994-3007.

[38] KONEV A Y, TRIBUS M, PARK S Y, et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo[J]. Science, 2007, 317:1087-1090.

[39] RADMAN-LIVAJA M, QUAN T K, VALENZUELA L, et al. A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast[J]. PLoS Genet, 2012, 8(7):e1002811.

[40] PERRUC E, KINOSHITA N,LOPEZ-MOLINA L. The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination[J]. Plant J, 2007, 52(5):927-936.

[41] SAEZ A, RODRIGUES A, SANTIAGO J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis[J]. Plant Cell, 2008, 20(11):2972-2988.

(责任编辑 屠 晶)